Visualization of Barrier Tree Sequences Revisited

Christian Heine¹ Gerik Scheuermann¹ Christoph Flamm² Ivo L. Hofacker² Peter F. Stadler³

¹Image and Signal Processing Group ³Bioinformatics Group Department of Computer Science University of Leipzig

²Department of Theoretical Chemistry and Structural Biology University of Vienna

EMBIO Meeting 2007 2007-05-18, Leipzig, Germany

Outline

Biological Context

Kinetic Folding and Folding Landscape Barrier Tree Sequences

Solution

Barrier Tree Animation Foresight Layout with Tolerance What is wrong with the Supergraph Construction? New Layout Algorithm

Results

Conclusion

e.g., all secondary structures that differ by one base pair

e.g., all secondary structures that differ by one base pair

e.g., all secondary structures that differ by one base pair

e.g., all secondary structures that differ by one base pair

	no	01	2
G I	ne		aı.
<u> </u>		~	

Barrier Trees

- topological simplification of folding landscapes
- reduction of the conformational space for kinetic folding simulation

Barrier Trees

- topological simplification of folding landscapes
- reduction of the conformational space for kinetic folding simulation

Barrier Trees

- topological simplification of folding landscapes
- reduction of the conformational space for kinetic folding simulation

- assumed to have a strong impact on the spatial structure of short lived RNA molecules
- for each base sequence length there is a folding landscape, these are correlated
- barrier trees are correlated as well

- assumed to have a strong impact on the spatial structure of short lived RNA molecules
- for each base sequence length there is a folding landscape, these are correlated
- barrier trees are correlated as well

- assumed to have a strong impact on the spatial structure of short lived RNA molecules
- for each base sequence length there is a folding landscape, these are correlated
- barrier trees are correlated as well

- assumed to have a strong impact on the spatial structure of short lived RNA molecules
- for each base sequence length there is a folding landscape, these are correlated
- barrier trees are correlated as well

- assumed to have a strong impact on the spatial structure of short lived RNA molecules
- for each base sequence length there is a folding landscape, these are correlated
- barrier trees are correlated as well

- assumed to have a strong impact on the spatial structure of short lived RNA molecules
- for each base sequence length there is a folding landscape, these are correlated
- barrier trees are correlated as well

- assumed to have a strong impact on the spatial structure of short lived RNA molecules
- for each base sequence length there is a folding landscape, these are correlated
- barrier trees are correlated as well

Barrier Tree Animation

... is a *dynamic graph drawing* problem

- it is not sufficient to layout and show each barrier tree independently
- ▶ in general, static aesthetic criteria fight dynamic aesthetic criteria

Barrier Tree Animation

... is a dynamic graph drawing problem

- it is not sufficient to layout and show each barrier tree independently
- ▶ in general, static aesthetic criteria fight dynamic aesthetic criteria

What is wrong with the Supergraph Construction?

algorithm overview:

preserve only father-son-relations of barrier trees

What is wrong with the Supergraph Construction?

algorithm overview:

preserve only father-son-relations of barrier trees

What is wrong with the Supergraph Construction?

algorithm overview:

preserve only father-son-relations of barrier trees

Supergraph Construction

"set of leaves" heuristic (see Heine, Scheuermann, Flamm, Hofacker, and Stadler, Visualization of Barrier Tree Sequences, IEEE Transactions on Visualization and Computer Graphics, 12(5), 2006, 781-788.

New Layout Algorithm

- identification of equivalent vertices using "set of leaves" approach
- find a permutation of the equivalence classes that makes all trees of the sequence "nice", formally:

$$\sigma = \underset{O}{\operatorname{argmin}} \sum_{i=1}^{N} \left(\alpha \cdot \operatorname{crossings}(T_i, O_{V_i}) + \beta \cdot \operatorname{localorder}(T_i, O_{V_i}) \right)$$

New Layout Algorithm

find the solution by repetition of the following:

- randomly switching two vertices in the permutation,
- reevaluation cost function $C(\sigma)$
- keep new permutation with

$$p = \begin{cases} 1 & \Delta C < 0 \\ \frac{1}{1 + exp(\Delta C T_t^{-1})} & \Delta C \ge 0 \end{cases} \qquad T_t = \frac{n_t - t}{t}$$

- just reducing crossings is not enough
- nice side effect: distribute vertices more uniformly on the screen

Results

runtime and quality improved greatly for HOK and LEPTO datasets

	equivalence	runtime old	runtime new
	classes	(1000 iterations)	(100000 iteration)
ATT	381	37s	27s
LEPTO	1531	3462s	79s
HOK	3793	16790s	182s

Conclusions and Future Work

Conclusion

strong improvement quality- and runtime-wise over old method

Future Work

determine optimal number of iterations automatically

more Information:

Christian Heine, Gerik Scheuermann, Christoph Flamm, Ivo L. Hofacker, and Peter F. Stadler, *Visualization of Barrier Tree Sequences Revisited*, to appear in Proceedings of Visualization in Medicine and Life Sciences (VLMS), 2007

Thank You!